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Abstract. A variational theory is proposed to study the surface states of electrons in a semi-infinite ternary
mixed crystal, by taking the effect of electron-surface optical (SO) phonon interaction into account. The
energy and the wave function of the electronic surface-states are calculated. The numerical results of the
energies of the surface states of the polarons and the self-trapping energies are obtained as functions of
the composition x and surface potential V0 for several ternary mixed crystal materials. The results show
that the electron-phonon interaction lowers the surface-state levels with the energies from several to scores
of meV. It is also found that the self-trapping energy of the surface polaron has a minimum at some middle
value of the composition x. It is indicated that the electron-phonon coupling effect can not be neglected.

PACS. 63.20.Kr Phonon electron and phonon phonon interactions – 71.38.+i Polarons and electron phonon
interactions – 73.20.At Surface states, band structure, electron density of states

1 Introduction

Ternary mixed crystal materials play an important role
in the modern electronics. Their properties may be var-
ied over a wide range by changing the compositions of
mixed crystals. Many experimental and theoretical stud-
ies on the lattice dynamics for ternary mixed crystals have
been done [1]. The random-element-isodisplacement (REI)
model [2] and its modification called the modified random-
element-isodisplacement (MREI) model [3,4] obtained im-
portant successes in the research on the lattice vibration of
ternary mixed crystals. The electron-phonon (e-p) inter-
action and the intermediate coupling polaron problems in
ternary mixed crystals have been studied in the framework
of MREI [5–9]. A minimum for the electron – bulk longi-
tudinal optical (LO) – phonon coupling has been found at
some mediate value of the composition x in bulk ternary
mixed crystals. The theoretical results qualitatively agree
with the experiments [8,9]. Furthermore, the e-p interac-
tion Hamiltonian in a slab of a ternary mixed crystal has
also been obtained [5–7]. It is expected that there are two
branches of surface optical (SO) phonons localized in the
vicinities of the surfaces and coupling with the electrons
in the ternary mixed crystal.

The electronic surface-states in polar materials have
been widely studied by experimental and theoretical sci-
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entists. The rich knowledge about the surface-state energy
levels, state densities and existence conditions were doc-
umented [10–13]. It is well-known that the termination
of the lattice produces the intrinsic surface states, whose
wave functions decay rapidly inside the material [10–12].
On the other hand, the optical phonons, in special, SO
modes influence considerably the properties of electrons
and sometimes introduce surface polaron states [7,14–
19]. Therefore it is necessary to include e-p interactions
in studying the properties of intrinsic surface states. Re-
cently, the authors used a variational theory to study the
eigenvalue problems of the surface states of polarons in
binary polar crystals, including both the intrinsic surface
electron states and e-p interaction effects [13,20]. The re-
sults show that the e-p coupling lowers the surface state
energy. It is indicated that LO-phonon effect is unimpor-
tant when the electron is near at the surface [15,20]. How-
ever, the surface polaron problem in ternary mixed crys-
tals is more complicated and rarely mentioned because
of the presence of the multi-branches of optical phonons.
Therefore a detailed investigation for this problem is nec-
essary and the effect of electron-SO-phonon (e-SO-p) in-
teraction should be discussed.

In the present paper, we study the effects of e-p inter-
action on the electronic surface states in ternary mixed
crystals, by using a variational treatment in the two-
band model. Both the effects of the discontinuity of lat-
tice and the e-p interaction are considered. Since the wave
functions of surface states are localized in the vicinity of
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the surface [11,12], only the contribution from SO modes
is involved in treating the e-p interaction as a simplified
model. An effective Hamiltonian for a surface polaron in a
semi-infinite ternary mixed crystal is obtained by using a
Lee-Low-Pines (LLP)-like method [17,21] in Section 2. A
variational calculation for the energy of surface polaronic
states is performed in Section 3 and the numerical results
for several practical materials are given and discussed in
Section 4.

2 Surface polaron Hamiltonian

Consider a semi-infinite material system, in which the
space of z ≥ 0 is filled by ternary mixed crystal AxB1−xC,
while the region z < 0 is the vacuum. An electron moves in
the system and couples with lattice vibrations. Using the
nearly-free-electron approximation (NFE) and our formu-
lation for the electron-SO-phonon interaction in a slab of
a ternary mixed crystal, the Hamiltonian of the electron-
phonon system can be written as [6,7,12,15,17]

H = He +Hph +He−p, (1)

where

He =
p2

t

2m∗
+

p2
z

2m0
+ V (z), (1a)

Hph =
∑
jk

~ωjsa+
jkajk, (1b)

He−p =
∑
jk

(
Fjk

e−k|z|

k1/2
eik·ρajk + h.c.

)
. (1c)

In the equations, j (= 1, 2) is the mode-index of SO-
phonons, r = (ρ, z) stands for the position vector of the
electron, a+

jk (ajk) is the creation (annihilation) opera-
tor of a phonon with 2D wave-vector k. As a traditional
treatment [10–12], the parabolic band approximation is
adopted to describe the motion of the electron in the x-y
plane because of the displacement symmetry. The band-
mass m∗ of the electron in the x-y plane can be obtained
by a linear interpolation

m∗ = xmAC + (1− x)mBC, (2)

where mAC and mBC are the band-masses of the electrons
in the binary crystals AC and BC respectively, and m0

is the rest mass of the electron. The 1D pseudo-potential
experienced by the electron in the z-direction [11,12] is
given by

V (z) =

{
−2V1 cos(2πz/a), z ≥ 0
V0, z ≤ 0

(3)

where V0 and V1 are respectively the vacuum energy level
and half of the forbidden band gap (FEG) Eg in the two-
band model. Since we focus our attention on the surface-
state problem and the electron is near the surface, only

the SO phonon modes are taken into account in Hamil-
tonian (1). The coupling functions for the electron-SO-
phonon interaction in (1c) are written as [6]

Fjs =
(

~e2

8ε0ωjsA

)1/2

Djs, (4)

where ωjs is the frequency of the jth branch of SO-modes
(j = 1, 2)

ω2
1s =

2
d2

1s

[(
xβ1 − x2e2

1Γ
)
− 2x(1− x)e1e2C1sΓ

+
(
(1− x)β2 − (1− x)2e2

2Γ
)
C2

1s

]
, (4a)

ω2
2s =

2
d2

2s

[(
xβ1 − x2e2

1Γ
)
C2

2s − 2x(1− x)e1e2C2sΓ

+
(
(1− x)β2 − (1− x)2e2

2Γ
)]
. (4b)

The parameter Djs is given by

D1s = −6ε0Γ

d1s
[xe1 + (1− x)e2C1s] , (4c)

D2s = −6ε0Γ

d2s
[xe1C2s + (1− x)e2] , (4d)

with

d2
1s =

2
M

{
xmA [(1− x)mB +mC]− 2x(1− x)mAmBC1s

+ (1− x)mB(xmA +mC)C2
1s

}
, (4e)

d2
2s =

2
M

{
xmA [(1− x)mB +mC]C2

2s

− 2x(1− x)mAmBC2s + (1− x)mB(xmA +mC)
}
,

(4f)

Γ = − 1
6ε0

{
1 + [xα1 + (1− x)α2]

1
6ε0

}
, (4g)

β1

µ1
=

ε1(0) + 2
ε1(∞) + 2

ω2
T1,

β2

µ2
=

ε2(0) + 2
ε2(∞) + 2

ω2
T2, (4h)

α1

V
= 3ε0

ε1(∞)− 1
ε1(∞) + 2

,
α2

V
= 3ε0

ε2(∞)− 1
ε2(∞) + 2

, (4i)

e2
1

µ1V
= 9ε0

ε1(0)− ε1(∞)
[ε1(∞) + 2]2

ω2
T1,

e2
2

µ2V
= 9ε0

ε2(0)− ε2(∞)
[ε2(∞) + 2]2

ω2
T2, (4j)

C1s =
1

2Ω2s

[
Ωs −

(
Ω2
s + 4Ω1sΩ2s

)1/2]
, (4k)

C2s =
1

2Ω1s

[
−Ωs +

(
Ω2
s + 4Ω1sΩ2s

)1/2]
, (4l)
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and

Ωs =
1
µ1

(
−xβ1 + x2e2

1Γ
)

− 1
µ2

[
−(1− x)β2 + (1− x)2e2

2Γ
]
,

Ω1s =
1
µ1
x(1− x)e1e2Γ

+
1
mC

[
−(1− x)β2 + (1− x)

2
e2

2Γ
]
,

Ω2s =
1
µ2
x(1− x)e1e2Γ +

1
mC

(
−xβ1 + x2e2

1Γ
)
. (4m)

In the above equations, M is the unit-cell mass and
given by

M = xmA + (1− x)mB +mC.

ε0 is the vacuum dielectric constant, εl (∞) and εl (0) are
respectively the high frequency and static dielectric con-
stants, ωTl is the frequency of transverse optical (TO)
phonons, βl and el are the nearest-neighbor force constant
and the ion effective change respectively, µl is the reduced
mass of the two ions in a unit-cell, in the crystals “l” (l = 1
and 2 stands for the binary crystal AC and BC, respec-
tively). mA, mB and mC are the masses of the ions A, B
and C, respectively.

To simplify the calculation for the effect of the elec-
tron-SO phonon interaction, we first carry out the unitary
transformation

U1 = exp

−i
∑
jk

a+
jkajkk · ρ

 . (5)

Doing so, we have

H∗ = U−1
1 HU1

=
1

2m∗

pt −
∑
jk

a+
jkajk~k

2

+
p2
z

2m0
+ V (z)

+
∑
jk

~ωjsa+
jkajk +

∑
jk

[
Fjse−k|z|k−1/2ajk + h.c.

]
,

(6)

where the 2D-component ρ of the electron position-vector
in the x-y plane disappears and the total momentum Pt

will be considered as a C-number.
Now let us consider a variational calculation to solve

the Hamiltonian H∗. We will confine our discussion in
the low-temperature limit and slow-motion electron case.
Choosing an ansatz

|ψ〉 = U2 |0〉 |φλ(z)〉 , (7)

where the wave-vector |0〉 describes the zero-phonon state
of the SO-phonon field, |φλ(z)〉 is the trial wave function

with a variational parameter λ and U2 is the unitary trans-
formation given by

U2 = exp

∑
jk

[
a+
jkfj(k)− ajkf∗j (k)

] . (8)

The corresponding variational energy of the system being

E = 〈ψ|H∗ |ψ〉 = 〈φλ(z)|Hf |φλ(z)〉 , (9)

where

Hf = 〈0|U−1
2 H∗U2 |0〉

=
P 2
t

2m∗
+

p2
z

2m0
+ V (z) +

∑
jk

[
Vjkfj(k) + V ∗jkf

∗
jk(k)

]

+
~2

2m∗

∑
jk

k |fj(k)|2
2

+
∑
jk

[
~ωjs −

~k ·Pt

m∗
+
~2k2

2m∗

]
|fj(k)|2 (10)

with

Vjk = Fjs
e−k|z|

k1/2
· (11)

The displacement amplitude fj(k) and its conjugate f∗j (k)
are determined by minimizing Hf [17,21] as follows

∂Hf

∂fj(k)
=

∂Hf

∂f∗j (k)
= 0, (12)

which gives

f∗j (k) =
−Vjk[

~ωjk −
~k ·Pt(1− η)

m∗
+
~2k2

2m∗

] , (13a)

with
η

1− η =
∑
j

αjsγj(z), (13b)

where

αjs =
e2

8πε2
0~ωjs

(
m∗

2~ωjs

)1/2

D2
js, (13c)

is the coupling constant between the electron and the jth
branch of SO-phonons,

γj(z) =

∞∫
0

2u3
jse
−2k|z|k2dk(

k2 + u2
js

)3 , (13d)

and ujs is defined by

ujs =
(

2m∗ωjs
~

)1/2

· (14)
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Inserting (13) into (10) leads to

Hf =
∑
j

P 2
t

2m∗ [1 + αjsγj(z)]
+

p2
z

2m0
+ V (z) + Veff(z),

(15)

where Veff is a 1D effective potential

Veff = −
∑
j

αjs~ωjsβj(z) (16)

and

βj(z) =

∞∫
0

ujse
−2k|z|dk

k2 + u2
js

· (17)

Here Hf includes the contribution of the e-p interaction
and is called the effective polaron Hamiltonian.

Since we are concerned with only the surface state and
the electron transverse motion is unimportant, we can set
Pt = 0 without loss of generality in the following. There-
fore the effective polaron Hamiltonian can be simplified
to be

Heff =
p2
z

2m0
+ V (z) + Veff(z). (18)

3 Variational energy

We now start with the effective Hamiltonian (18) to cal-
culate the surface-state energy of the polaron. The corre-
sponding variational energy is given by

Ev = 〈φλ(z)|Heff |φλ(z)〉 . (19)

Here the trial wave-function |φλ(z)〉 can be well-chosen
to be similar to the nearly-free-electron approximation
(NFEA) wave-function of intrinsic surface states [12,13].

A NFEA perturbation theory (NFEPT) has been used
to seek the solutions for a Hamiltonian in a binary crystal
without including the e-p interaction [10,12], where the
surface-state eigenfunction was found to be

|ψ〉 =

{
Ae−µz cos(πz/a+ δ), z ≥ 0
Beq0z , z ≤ 0

(20)

where the energy E and parameters q0, µ and δ were de-
termined by some equations [12]. However, the NFEPT
method becomes invalid when the band gap is so broad
that the perturbation can not be treated as a small dis-
turbance. A variational method has been used to improve
the result [13,20], which works well in a larger range of
the band gap. The trial wave function is then chosen as

|φλ(z)〉 =

{
Ae−λ1z cos(πz/a+ λ2), z ≥ 0
Beqz z ≤ 0

(21a)

where λ1 and λ2 are treated as variational parameters.
Matching φλ(z) and φ′λ(z)/φλ(z) at z = 0, provides the
relationships:

A cosλ2 = B, (21b)

q = −
(
λ1 +

π

a
tanλ2

)
, (21c)

while A is determined by

A−2 =− cos2 λ2

2
(
λ1 +

π

a
tanλ2

)
+

1
4

λ1 cos 2λ2 −
π

a
sin 2λ2

λ2
1 + π2/a2

+
1
λ1

 · (22)

Inserting (21) into (19), the expectation value of Heff is
given by

Ev =
π2~2A2

8m0a2λ1
− V0

2
A2 cosλ2

λ1 +
π

a
tanλ2

− V1A
2

4

(
cos 2λ2

λ1
+

2λ1

λ2
1 + π2/a2

+
λ1 cos 2λ2 −

2π
a

sin 2λ2

λ2
1 + 4π2/a2

)
−
∑
j

Ee−js, (23)

where

Ee−js = αjs~ωjsA2
(
Ij + gj cos2 λ2

)
, (24)

with

Ij =

∞∫
0

ujs

4
(
k2 + u2

js

)
×

 1
λ1 + k

+
(λ1 + k) cos 2λ2 −

π

a
sin 2λ2

(λ1 + k)2 + π2/a2

 dk, (25a)

and

gj = −
∞∫

0

ujsdk

2
(
k2 + u2

js

) (
λ1 +

π

a
tanλ2 − k

) · (25b)

The variational parameters are determined by the follow-
ing equation

∂Ev
∂λi

= 0, i = 1, 2. (26)

Solving numerically the equation (26) for practical materi-
als, one can obtain the minimum of the variational energy
Ev as the surface-state energy Es.

The last term in (23) can be written as

Etr =
∑
j

Ee−js = Etr1 +Etr2 = Ee−1s +Ee−2s, (27)
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Table 1. Parameters of some III–V and II–VI components.
Energy is measured in meV and mass in electron rest mass
m0.

Materials ε0 ε∞ m(m0) ~ωTO ~ωLO

AlAsa 10.06 8.16 0.150 44.8 50.09
GaAsa 13.18 10.89 0.067 33.29 36.25
GaPb 10.28 8.46 0.338 45.31 49.96
InPb 12.29 9.56 0.076 38.20 43.32

ZnSeb 8.33 5.90 0.171 25.67 30.50
ZnTeb 9.86 7.28 0.160 21.95 25.42

a Reference [22]. b Reference [23].

Table 2. Lattice constants and Eg used in the computations
for several ternary mixed crystals. Energy is measured in meV.

Material a (Å) Eg

AlxGa1−xAsc 5.653 3 + 0.007 8x 1 425 + 1 155x + 370x2

GaxIn1−xPd 5.869 6− 0.418x 1 350 + 668x + 758x2

ZnSexTe1−x
e 6.103 7− 0.435x 2 390 + 433x

c Reference [22]. d Reference [24]. e Linear interpolation.

and called as the self-trapping energy of the surface po-
laron. Here the terms of j = 1 and 2 correspond to the
contributions of the electron-phonon interactions from two
different branches of SO-phonons, respectively. It is seen
from (23) and (27) that the electron-SO-phonon coupling
lowers the energy of the surface-state polaron with the
value of the self-trapping energy Etr.

4 Numerical results and discussion

We have numerically computed the surface-state energies
of the polaron for several ternary mixed crystal materials.
For the sake of comparison we have also calculated the
surface state energies of the electron without including
the e-p interactions. As examples we illustrate the numer-
ical results for the ternary mixed crystals AlxGa1−xAs,
GaxIn1−xP and ZnSexTe1−x in Figures 1–4. The param-
eters used in the computations are listed respectively in
Table 1 and Table 2 for binary and ternary mixed crystals.

Figure 1 shows the surface-state energy levels as func-
tions of the compositions x for the ternary mixed crystal
materials listed in Table 2, here we put the surface poten-
tial to be a reasonable value V0 = 5.0 eV in the compu-
tations for reference. For comparison, both the curves of
the energy levels including (Eps ) and ignoring (E0

s ) the
e-p interactions are also plotted in the same figure. It
is clearly seen from Figure 1 that the surface-state lev-
els as functions of the composition x are monotonous for
ZnSexTe1−x and non-monotonous for AlxGa1−xAs and
GaxIn1−xP, corresponding to the linear and square vari-
ations of the width Eg of the FEG with increasing the
composition x.

As is expected that the surface-states including the
e-p interaction are always lower than that without in-
cluding the phonon effects for all the computed materi-

(a)

(b)

(c)

Fig. 1. Surface-states energies ES with (solid lines) and with-
out (dashed lines) electron-phonon interactions as functions
of composition x for ternary mixed crystals: (a) AlxGa1−xAs,
(b) GaxIn1−xP and (c) ZnSexTe1−x.
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Table 3. FEG, ∆Eph for some ternary mixed crystals. Energy
is measured in meV.

Material x = 0.2 x = 0.8

Eg ∆Eph Eg ∆Eph

AlxGa1−xAs 1 671 −1.58 2 586 −3.14
GaxIn1−xP 1 514 −3.27 2 370 −7.34
ZnSexTe1−x 2 479 −4.34 2 736 −6.03

als. In other words, the e-p interaction lowers the energy
levels of the surface states. It is also found in Figure 1
that the two curves of the surface-state levels with and
without the phonon effects are separated by a few meV
(around 1 ∼ 10 meV). The curves in Figure 1a almost
coincident for the weak e-p coupling ternary mixed crys-
tal AlxGa1−xAs. However, the curves for the materials
GaxIn1−xP and ZnSexTe1−x in Figure 1b and Figure 1c
are separated distinctly from each other. On the other
hand, the surface-state shifts are also related to the width
of FEG. Table 3 lists the FEG widths Eg and the en-
ergy shifts ∆Eph = Eps − E0

s of surface-states by the e-
p interaction for the above materials with x = 0.2 and
x = 0.8, respectively. It can be seen that the broader
FEG generally causes the greater shift for the surface state
level. The phonon effects are smaller for weak e-p coupling
or narrow band gap materials, such as Al0.2Ga0.8As and
Ga0.2In0.8P (around 1.5 ∼ 3.0 meV), but are consider-
able for the others, such as Ga0.8In0.2P and ZnSe0.8Te0.2

(around 6 ∼ 8 meV) with stronger e-p coupling or broad
band gaps. It follows that the stronger the e-p coupling or
broader width is, the greater the shift of surface state.

We have also computed the surface-state energy levels
as functions of the surface potential V0, which has been
chosen to vary in the reasonable range 3.9–5.7 eV [12]
in the computations. The results of Eps and E0

s for the
materials listed in Table 2 are shown as functions of the
surface potential V0 in Figure 2. It is seen that the surface
state shifts by SO-phonons are almost independent of V0.
It will be seen from this that choosing the surface potential
as V0 = 5.0 eV does not loss the generality.

To clear understand the feature of the e-SO-p interac-
tion effects in the ternary mixed crystal, we have plotted
the e-SO-p coupling constants αs1 and αs2 as functions of
the composition x in Figure 3, where the surface potential
V0 is chosen as a typical value 5.0 eV. It is shown that the
feature of coupling between electron with two branch SO-
phonon is obvious different. The coupling constant αs1 is
larger than αs2 in the whole range of the composition x,
and the value of αs1 (αs2) gets the value corresponding to
that in the end material AC (BC) at x = 0 and x = 1.
Therefore the characteristics for the coupling constants
αs1 and αs2 can be recognized as two-mode behavior
[2–4,9]. It is also found that the dependence of αs1 on the
composition x is nearly linear, but αs2 intensely changes
and has a minimum at a mediate value of x.

In Figure 4, we have illustrated the shifts of the
surface-state by SO-phonons as functions of x with V0 =
5.0 eV. It is clearly seen that the self-trapping energy of

(a)

(b)

(c)

Fig. 2. The surface-states energies ES with (solid lines)
and without (dashed lines) electron-phonon interactionsas
functions of the surface potential barrier V0 for ternary
mixed crystals: (a) Al0.25Ga0.75As, (b) Ga0.75In0.25P and
(c) ZnSe0.85Te0.15.
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(a)

(b)

(c)

Fig. 3. Electron-SO-phonon coupling constants αs1 (solid line)
and αs2 (dashed line) as functions of the composition x for
ternary mixed crystals: (a) AlxGa1−xAs, (b) GaxIn1−xP and
(c) ZnSexTe1−x.

(a)

(b)

(c)

Fig. 4. The self-trapping energy Etr as function of the
composition x for ternary mixed crystals: (a) AlxGa1−xAs,
(b) GaxIn1−xP and (c) ZnSexTe1−x.
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the surface polarons as function of x is non-monotonous
and has a local minimum at a middle value between
x = 0.4 and x = 0.5 for all the materials we computed.
The analogous feature was also found for bulk materials
of ternary mixed crystals [8,9]. The minimum of e-p cou-
pling can be explained as that the two polarization-waves
due to respectively the A-C and B-C ion-pairs disturb by
each other.

At the end of x = 0, the ternary mixed crystal reduces
to the binary crystal BC. With increasing the composition
x, the impurities of A-ions are doped into the system, so
that the propagation of the BC-like polarization-wave is
turned into difficult and the corresponding e-p coupling
decays. In the meanwhile, AC-like phonon modes are al-
most localized and contribute nothing to the e-p coupling.
At the other end, i.e. x = 1, a similar situation is shown
for AC-like polarization-wave. Therefore the total e-p cou-
pling decreases with x and gets their minimum at the near
middle value of composition x.

Nevertheless, the characteristics of the curves for sur-
face states are dramatically different from that of bulk
polarons [9]. The e-p contributions to the surface-states
come from two SO-phonon branches, whose frequencies
and the e-p coupling behavior are different from that in
bulk [2,3,9]. In addition, the dependence of the width of
FEG on the composition x in the way of monotonous or
non-monotonous also causes different e-p coupling contri-
butions (see Tab. 3). The varied factors make the com-
plexity of the curves for surface polarons.

Moreover, it is also found that the strengths of the
phonon effects for varied systems are obviously different.
The self-trapping energies are smaller for the weaker e-p
coupling and narrower forbidden zone materials, such as
Al0.2Ga0.8As and Ga0.2In0.8P materials, but larger for the
materials with stronger e-p coupling and wider FEG, such
as Ga0.8In0.2P and ZnSe0.8Te0.2 materials.

In summary, we have investigated the surface states
of an electron in a semi-infinite ternary mixed crystal in-
cluding e-SO-p interaction by a variational treatment. The
energy level of a surface polaron state has been calcu-
lated. The effects of the e-SO-p interaction on the surface
states are obtained for some ternary mixed crystal ma-
terials. The numerical results show that the e-p coupling
lowers the surface-state levels from several to scores of
meV. Therefore the phonon effects can not be neglected,
especially for materials with stronger e-p couplings and
broad band gaps. As a striking character, a minimum of
the contribution of the electron-phonon interaction to the
energy of the surface polaron in a ternary mixed crystal
is also found.
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